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The present work investigates the dynamics of a class of two-degree-of-freedom oscillators
with cubic non-linearity in the restoring forces. These oscillators are under the action of an
external load including constant and harmonic components. Initially, a perturbation
analysis is applied to the equations of motion, demonstrating the e!ect of the asymmetry
induced by the constant loading component on the classical 1 : 1 and 1 : 3 internal
resonances, as well as on the possibility of the appearance of a "rst order 1 : 2 internal
resonance. Next, sets of slow-#ow equations governing the amplitudes and phases of
vibration are derived for the special case of no internal resonance and for the most
complicated case corresponding to 1 : 1 internal resonance. The analytical "ndings are then
complemented by numerical results, obtained by examining the dynamics of
a two-degree-of-freedom mechanical system. First, the e!ect of certain system parameters on
the existence and stability of constant and periodic solutions of the slow-#ow equations is
illustrated by presenting a sequence of response diagrams. Finally, the dynamics of the
system used as an example is investigated further by direct integration of the slow-#ow
equations. This shows the existence of a period-doubling sequence culminating into
a continual interchange between quasiperiodic and chaotic response. It also demonstrates
a new transition scenario from phase-locked to phase-entrained and drift response.

( 2000 Academic Press
1. INTRODUCTION

The response of mechanical systems with asymmetric sti!ness and damping properties has
been examined in a large number of previous investigations (e.g. references [1}5]). In
particular, for multiple-degree-of-freedom dynamical systems with non-linear
characteristics, one of the strongest e!ects is the appearance of a "rst order 1 : 2 internal
resonance. On the other hand, non-linear systems with symmetric characteristics exhibit
1 : 1 and 1 : 3 resonances to "rst order [4}12]. Occasionally, they can also present
asymmetric response due to symmetry-breaking bifurcations [10}13]. Moreover, besides
the asymmetry in the constitutive properties, response asymmetry arises frequently in
symmetric non-linear systems due to the presence of a constant component in the external
loading [4].

The main objective of the present study is to investigate the e!ects of a load-induced
asymmetry on the dynamics of a general class of mechanical systems with symmetric
non-linearities in their restoring forces. More speci"cally, the dynamical systems examined
are represented by a set of two coupled equations of motion. These equations are weakly
non-linear and as a consequence, approximate analytical solutions can be obtained by
applying suitable singular perturbation methodologies [4, 13]. Here the emphasis is placed
on cases where conditions of primary external resonance are satis"ed. Under such
2-460X/00/220279#17 $35.00/0 ( 2000 Academic Press
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conditions, di!erent sets of slow-#ow equations are derived for the amplitudes and phases of
vibration arising in the case of no internal resonance and when 1 : 1 internal resonance is
activated.

The dynamical system examined is presented in the following section in a quite general
weakly non-linear form. Approximate analytical solutions are then obtained for the case of
primary external resonance. Namely, sets of slow-#ow equations are "rst derived for the
amplitudes and phases of vibration by applying the method of multiple time scales. The
simplest form of these equations appears in the case of no internal resonance. On the other
hand, the most complex situation arises when conditions of 1 : 1 internal resonance are
ful"lled. These cases are examined separately in sections 3 and 4 respectively. In section 5,
an example of a mechanical system is introduced and its equations of motion are presented
in the normalized form analyzed in the previous sections. Section 6 presents characteristic
numerical results in the form of response diagrams, including constant and periodic
solutions of the slow-#ow equations. These results are accompanied with results obtained
by direct integration of the slow-#ow equations, demonstrating the existence of more
complicated motions of the system, including a period-doubling sequence leading to chaos.
They also illustrate a transition from phase-locked to phase-entrained and drift response.
The "nal section summarizes the highlights of the study.

2. EQUATIONS OF MOTION * PERTURBATION ANALYSIS

The equations of motion for the class of dynamical systems examined in the study can be
presented in the following normalized canonical form:

uK
n
#u2

n
u
n
#e(a

n1
uR
1
#a

n2
uR
2
#c

n1
u3
1
#c

n2
u2
1
u
2
#c

n3
u
1
u2
2
#c

n4
u3
2
)

"2f
n0
#2ef

n1
cos(X

1
t!h

n1
)#2e f

n2
cos (X

2
t!h

n2
) (1)

with n"1, 2 and DeD@1. Besides the linear terms, these equations include weak cubic
non-linearities in the restoring forces. In addition, the external forcing includes constant and
harmonic components. The latter are multiplied by the small parameter e, because this
study will focus on the principal external resonances of the system. Thus, it will be assumed
in the following that the forcing frequencies satisfy the resonance conditions
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The classical multiple time scales method is then applied in order to determine approximate
solutions of the equations examined with the form
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where q
0
"t and q

1
"et [4]. Substituting the asymptotic expansion (3) into the equations

of motion (1) and collecting the zero and "rst order terms in e yields the following linear
equations:
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respectively, with D
m
,L/Lq

m
. For analytical convenience, the solution of equation (4) is

"rst expressed in the complex form
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where cc denotes the complex conjugate of the preceding terms, while
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Then substitution of u
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from equation (6) into equation (5) leads to the following equation:
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By a simple inspection of the right-hand side of the last equation it is clearly seen that the
presence of the constant forcing terms f

n0
(or, equivalently, h

n
) a!ects the terms giving rise to

1 : 1 internal resonance. This resonance is typical and together with the 1 : 3 internal
resonances, they are expected to occur to "rst order in systems with symmetric
non-linearities [4}12]. However, the system can also exhibit 1 : 2 internal resonance entirely
due to the presence of the constant forcing components. If these components are removed,
the 1 : 1 and 1 : 3 internal resonances can still exist while the occurrence of the 1 : 2 internal
resonance becomes impossible. These observations are analyzed and discussed further in
the following two sections.

3. ANALYSIS OF SYSTEMS WITH NO INTERNAL RESONANCE

For the simplest case, where the system examined exhibits no internal resonance,
application of standard procedures in equation (7) yields the following set of solvability
conditions:
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The overbars indicate complex conjugate quantities, while the primes denote di!erentiation
with respect to the slow time q

1
. As usual, expressing the solution amplitudes in the polar

form
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substituting in the solvability conditions (8), (9) and separating the real from the imaginary
parts of the resulting relations, leads to a set of slow-#ow equations with the following form:
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where
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The system of "rst order autonomous ordinary di!erential equations (11)}(14) governs
the amplitudes and phases of the approximate solutions expressed by equation (3). Note
that if (a
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are also solutions. Moreover, combination of relations (2), (6), (10) and (15) with equation (3)
shows that the corresponding solutions of the original equations of motion (1) appear in the
form
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The above results demonstrate that the constant forcing terms a!ect the system dynamics
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which together with equation (11) forms a set of slow-#ow equations similar to that
presented in Appendix A for the single-degree-of-freedom Du$ng oscillator subjected to
constant and harmonic loading. The main di!erence is that the term c

2
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Among the possible solutions of equations (11)}(14), constant solutions are expected
to play a dominant role. In order to capture such solutions, all the time deriva-
tives on the left-hand side of these equations are set equal to zero. This leads to a
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Likewise, the other two equations can be put in the form
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Squaring and adding both sides of equations (18a) and (18b) results in
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Similar manipulation of equations (19a) and (19b) yields
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Equations (20) and (21) represent a set of two algebraic equations for the two unknowns
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. Numerical solution of this system determines the amplitudes of

vibration a
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. Then, the corresponding phases c
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are evaluated by simple
back substitution in equations (18) and (19). Finally, the stability properties of these
motions are determined by applying the classical method of linearization [4].

4. DYNAMICAL SYSTEMS WITH INTERNAL RESONANCE

As usual, the system dynamics becomes more involved when internal resonances are
activated. For instances, in the case of a 1 : 2 internal resonance with
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Obviously, when the mean load is zero both of these terms disappear and the occurrence of
the 1 : 2 internal resonances becomes impossible. On the other hand, this is not the case for
the 1 : 3 internal resonance, which occurs when the frequency condition
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need to be included in the solvability conditions (8) and (9). In fact, both of these terms do
not depend at all on the constant load components.

The most complicated situation arises when the dynamical system is in a state of a 1 : 1
internal resonance. This occurs when the linear natural frequencies satisfy the following
condition:
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and
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respectively. Then, applying a procedure similar to that presented in the previous section
leads to the following new set of slow-#ow equations:
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Solution of the set of equations (23)}(26) determines the amplitudes and phases of
approximate motions of the original system (1), which are expressed by equation (16) again.

Application of de"nition (15) in conjunction with the last expression yields the relation
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Based on this result, it can readily be veri"ed that the new set of slow-#ow equations
satis"es the same symmetry properties as the set of equations (11)}(14). In addition, the last
relation indicates that solutions of the set (23)}(26) with constant phases c
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which converts the set of slow-#ow equations (23)}(26) into an autonomous form.
Therefore, in this case, constant solutions of this set of equations, with a@
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and consequently c@"0, do exist and can be determined by solving the resulting set of
algebraic equations. Also, the stability properties of these solutions can be investigated by
applying the classical method of linearization [4]. Finally, the same set of equations may
also exhibit periodic solutions. Determination of such solutions as well as of their stability
properties, requires the application of special numerical techniques [14].
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5. EXAMPLE MECHANICAL MODEL

The methodology presented in the previous sections is applied to the example mechanical
oscillator shown in Figure 1. This oscillator represents a typical half-car model,consisting of
a rigid body with mass m and centroidal mass moment of inertia I

G
[15]. The car body is

supported by two suspensions, modelled by spring}damper elements with linear viscous
damping and Du$ng-type springs. Consequently, if z
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Figure 1. Mechanical model.
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c
.

Next, a suitable methodology is applied, bringing the equations of motion (27) into the
canonical form (1). This is accomplished by solving the eigenvalue problems

(K!u2
n
M)/

n
"0, (KT!u2

n
MT) w

n
"0

and forming the modal matrices U"[/
1

/
2
] and W"[w

1
w

2
] of the right and left

eigenvectors, respectively, so that they satisfy the following bi-orthogonality conditions

WTMU"I"C
1 0

0 1D and WTKU"K,C
u2

1
0

0 u2
2
D . (28)

Then employing the co-ordinate transformation

x"Uu, (29)

substituting in equation (27), premultiplying both sides of the resulting equation with WT,
setting

fK"ef

and employing the bi-orthogonality relations (28), leads to

uK#Ku#eg (u, u5 )"f (q) (30)

with

eg(u, u5 )"WTgL (Uu, Uu5 ) and f (q)"WT f< (q)"2f
0
#f

1
(q).

In particular, the time-dependent part of the excitation vector can be set in the form

f
1
(q)"2e A

f
11

cos (Xq!h
11

)

f
21

cos (Xq!h
21

)B
which eventually brings equation (30) into the form of equation (1) with f

2
(q)"0. This

corresponds to monofrequency excitation with X
2
"X

1
,X. Therefore, based on

equations (16) and (29), it is concluded that a constant solution of equations (23)}(26)
corresponds to a periodic motion of the dynamical system expressed by equation (27). On
the other hand, a periodic solution of the same set of equations represents a quasiperiodic
motion of the mechanical system examined.

6. RESPONSE DIAGRAMS

This section presents numerical results obtained for the example mechanical system
introduced in the previous section. As it is clear from the form of the mass and sti!ness
matrix of this system, its linear natural frequencies are functions of the parameters b, i and
k only. Initially, it is assumed that the system is close to conditions of 1 : 1 internal
resonance. Figure 2 shows curves on the (k, i) plane, determined for b"1)31 and several
levels of detuning ep, so that frequency relation (22) is ful"lled. From these results, it is easily
observed that for given b, k and natural frequency detuning ep, this condition is satisifed for
two di!erent values of the sti!ness ratio parameter i, except for the case of the pure 1 : 1
internal resonance.

Next, a series of frequency-response diagrams is presented, after solving the averaged
equations (23)}(26) for constant and periodic solutions by employing AUTO [14]. First, the



Figure 2. Curves on the (k, i) plane obtained for b"1)31 and several frequency detuning levels.
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diagrams of Figure 3 illustrate the e!ect of the damping parameter f on the system response.
These diagrams were obtained for di!erent values of the damping parameter f, while the
other technical parameters were held constant. More speci"cally, the following set of
parameters was chosen: e"0)01, j"1, k"1)1, l"0)048, gL "2 and sL"0)1. In addition,
the value of the sti!ness ratio parameter i was chosen so that p"5, while the damping

ratio parameter was selected so that c"Jbik. In all cases, the broken lines represent
branches of unstable solutions, while the branches of periodic solutions are represented by
thicker lines.

The numerical results of Figure 3 demonstrate that for relatively large values of f, the
response amplitudes are quite small. As a consequence, the e!ect of the non-linearities
considered is not important. However, by decreasing the value of f, the gradual increase in
the solution amplitudes makes the presence of the model non-linearities progressively more
pronounced. This is marked by the classical bending of the response diagrams and the
appearance of coexisting constant and periodic solutions. In particular, Figure 3(d) shows
details in the forcing frequency range of Figure 3(c), where the branch of stable periodic
solutions terminates.

Qualitatively similar response diagrams were obtained by varying the other system
parameters. For instance, the diagrams of Figure 4 show the e!ect of the constant loading
parameter, expressed by gL . These diagrams were determined after setting f"0)004, for
gL "0 (corresponding to the symmetric loading case) and gL "8. Note that Figure 3(b) is also
part of the same sequence of diagrams, with gL "2.

Finally, among all the parameters, the inertia parameter k was found to have a dominant
e!ect in the natural frequency detuning of the system.This is illustrated by Figure 5, which
shows response diagrams obtained for k"1)1 and 3, leading to values of the detuning
parameter p equal to 5 and 42)68 respectively. Here, the thicker lines represent constant
solutions determined by solving the set of slow-#ow equations (11)}(14), which were
developed for the case of no internal resonance. Direct comparison of the results indicates



Figure 3. Frequency-response diagram of amplitude a
1

for: (a) f
1
"0)1, 0)03 and 0)01, (b) f

1
"0)004, (c) and (d)

f
1
"0)0015.

Figure 4. Frequency-response diagram of amplitude a
1

for: (a) gL "0 and (b) gL "8.
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that the larger the detuning parameter p, the more accurate the predictions of the latter set
of equations become, as expected.

At all points of the frequency-response diagrams presented in this section where vertical
tangency occurs, branches of constant solutions are generated or disappear through



Figure 5. Frequency-response diagram of amplitude a
1

for: (a) p"5 and (b) p"42)68.
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saddle-node bifurcations. On the other hand, branches of periodic solutions originate from
points corresponding to parameter combinations leading to a Hopf bifurcation of
a constant solution [13]. If the parameters are such that secondary bifurcations can occur
after the original Hopf bifurcation, the system may exhibit complicated and exotic
dynamics. The following section presents results for such a case.

7. DIRECT INTEGRATION OF SLOW-FLOW EQUATIONS

This section presents results obtained by direct integration of the slow-#ow equations
(23)}(26) and in particular for the parameters corresponding to the response diagram of
Figure 3(d). More speci"cally, Figure 6 shows the projection of the system trajectories on
the (a

1
, a

2
) plane for several values of the forcing frequency near the Hopf bifurcation at

about p
1
"5)17. First, the stable constant solution captured at p

1
"5)16 (represented by

a dot) gives way to periodic response after the Hopf bifurcation (represented by closed
curves), as shown in Figure 6(a). With a further increase in the value of p

1
, this response

undergoes a sequence of period doublings (Figures 6(b) and 6(c)), leading eventually to
chaotic motion (Figure 6(d)). Moreover, at some point, a sudden explosion of the original
attractor occurs, leading to a new and considerably bigger chaotic attractor (Figure 6(e)).

Due to the symmetry properties of the set of equations examined, for every solution
appearing in the "rst quadrant of the (a

1
, a

2
) plane, there exist three more conjugate

solutions in the remaining three quadrants of the plane, resulting from proper re#ections on
the a

1
and a

2
axes. In fact, the attractors of such solutions may sometimes collide with each

other, leading to trajectories visiting two quadrants of the (a
1
, a

2
) plane (Figure 6(f)). This

was followed by forcing frequency intervals where the trajectories return entirely to a single
quadrant again (Figure 6(g)). This interchange was seen to take place repeatedly in the
present system by varying p

1
. Actually, for some values of p

1
, the trajectories were found to

visit all four quadrants of the (a
1
, a

2
) plane, as illustrated in Figure 6(h).

Similar phenomena were observed in some other recent studies, where they were related
to satisfaction of Silnikov conditions by the dynamical systems examined [12, 16, 17].
Moreover, it was "rst shown in reference [12] that these phenomena were associated with
certain changes in the phases of vibration. Similar and even more complicated phases
response was also detected in the present investigation. For instance, Figure 7 shows the



Figure 6. Trajectories on the (a
1
, a

2
) plane at: (a) p

1
"5)16, 5)18, 5)4 and 5)93, (b) p

1
"5)935, (c) p

1
"6)01,

(d) p
1
"6)027, (e) p

1
"6)036418, (f) p

1
"6)2196, (g) p

1
"6)3 and (h) p

1
"6)34.
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Figure 7. Time histories of phase c
2

at: (a) p
1
"5)18, (b) p

1
"6)036418, (c) p

1
"6)219445 and (d) p

1
"6)2196.
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characteristic changes observed in the time history of phase c
2
, for the parameters and the

forcing frequency interval of Figure 6. First, Figure 7(a) shows the time history at p
1
"5)16

and 5)18, indicating the change from phase locked (constant) to entrained (periodic)
response,. occurring after the Hopf bifurcation [18]. Likewise, Figure 7(b) presents the
changes observed in the history of c

2
at the attractor explosion presented in Figure 6(e).

After this explosion, the phase c
2

may occasionally develop a 2n drift (Figure 7(c)). In
addition, at the time instances where the trajectory moves to a di!erent quadrant, a phase
drift with magnitude n occurs (Figure 7(d)). In accordance with the results presented in
reference [12], this is due to the symmetry property

(a
1
, a

2
, c

1
, c

2
) P (a

1
,!a

2
, c

1
, c

2
#n)

exhibited by the system examined.
For p

1
'6)2196, phase c

2
appears to develop a continuous drift. However, within some

relatively short forcing frequency intervals, this was found to occasionally be interrupted by
intervals where the drift stops. For example, Figure 8 shows the response obtained at
p
1
"6)34161. At some point, the original chaotic attractor (Figure 8(a)) is replaced quite

rapidly by a similar attractor with simpler from (Figure 8(b)). The time history of amplitude
a within the time interval needed for the development of these trajectories is shown in

2



Figure 8. Boundary crisis of p
1
"6)34161: (a) trajectories of the original attractor on the (a

1
, a

2
) plane,

(b) trajectories of the new attractor on the (a
1
, a

2
) plane, (c) time history of amplitude a

2
and (d) time history of

phase c
2
.
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Figure 8(c), while the corresponding time history of phase c
2

is shown in Figure 8(d),
demonstrating the drift interruption. With a slight increase in the forcing frequency, the
attractor shape quickly regains its original complexity and phase c

2
exhibits a gradual

transition towards full drift again.
Finally, it should be noted that phase c

1
exhibits a di!erent and simpler route to full drift;

namely, near the Hopf bifurcation at p
1
"5)17, this phase follows exactly the same

transition pattern from locking to entrainment as phase c
2
. However, beginning with the

explosion of the attractor shown in Figure 6(e), the time history of phase c
1

was found to
develop a permanent drift (Figure 9(a)), which persisted for all the subsequent time and
values of the forcing frequency. For completeness in the presentation, the time history of
amplitude a

1
, corresponding to the same time interval, is also shown in Figure 9(b).

8. SYNOPSIS AND CONCLUSIONS

An analysis method has been developed for investigating the e!ect of a load-induced
asymmetry in the response of a general class of two-degree-of-freedom dynamical systems,
with symmetric non-linearities in the restoring forces. The non-linearities are weak and this



Figure 9. Time history of: (a) phase c
1

and (b) amplitude a
1
, at p

1
"6)036418.
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permits determination of approximate analytical solutions by applying appropriate
singular perturbation procedures. It was "rst shown that the presence of a constant load
component a!ects the classical 1 : 1 and 1 : 3 internal resonances but, more importantly, it
makes possible the appearance of 1 : 2 internal resonances to "rst order. Sets of slow-#ow
equations were then derived, governing the amplitudes and phases of approximate motions
occurring in cases without internal resonance and for systems near conditions of 1 : 1
internal resonance.

The analysis was subsequently applied to an example mechanical system, for which
representative numerical results were obtained. These results were "rst presented in the
form of frequency-response diagrams and demonstrated the e!ect of selected system
parameters on its dynamics. In particular, a decrease in the damping level was found to lead
to a more pronounced e!ect of the non-linearities. This was manifested by the classical
bending of the response curves, resulting in a coexistence of stable and unstable branches of
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constant and periodic solutions. Finally, these results were complemented with results
obtained by direct integration of the slow-#ow equations, revealing the existence
of a period-doubling sequence of periodic motions, leading eventually to quasiperiodic
and chaotic solutions. Apart from the classically observed phenomena, these results
illustrate a new transition scenario from phase-locked to phase-entrained and "nally drift
response.
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APPENDIX A: DUFFING OSCILLATOR UNDER PERIODIC FORCING

Application of the multiple time scales method to a weakly non-linear Du$ng oscillator
with equation of motion

uK#u2
0
u#e (2kuR #bu3)"2 f

0
#2ef

1
cosXt

for De D@1 and under conditions of primary external resonance, expressed by the frequency
relation

X"u
0
#ep

shows that it accepts approximate analytical solution of the form

u (t)"2h#a cos (Xq
0
!c)#O(e).

The amplitude and phase of the harmonic response component satisfy the slow-#ow
equations

a@"!ka#fK sin c, ac@"p( a!cL a3#fK cos c,

where

p("p!
6bh2

u
0

, cL"
3b
8u

0

, fK "
f
1

u
0

, h"
f
0

u2
0

.

These results are almost identical with those obtained for the case of harmonic external
excitation alone. The only e!ect of the constant forcing component is felt through the
modi"cation of the detuning parameter pL .
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